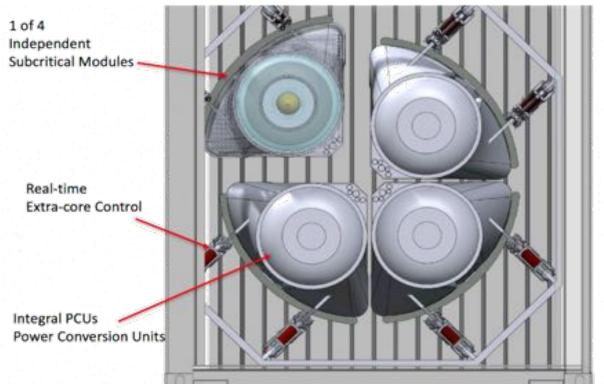
Holos Generators: Distributable, Integral very-Small Modular Reactors (v-SMRs) Competitive and Synergetic with Renewable Energy Sources


Claudio Filippone, Ph.D.

President and CEO, HolosGen LLC

International SMR and Advanced Reactor Summit 2018
Atlanta

Transportable Generators via Balance of Plant Elimination

- Trasformative
- Advanced with modest investment
- Shortened construction time
- Tested at full-scale
- DBA, BDBA performance validation
- Autonomous & "walkaway" safe
- Extremely low capital cost
- Fast commissioning
- Decommissioning-ready
- Reliant on proven technologies
- Disruptive in the market place

http://www.holosgen.com/neutron-coupling-decoupling/ Video Link

Main Features & Requirements

Independent of Site-specific Stressors

- Electric-island immediately operational
- Station Black Out (SBO) immune
- Loss Of Coolant Accident (LOCA) immune
- Sabotage and design basis attack resistant
- Air-cooled, passive decay heat removal

- Near-real time load following (MW/sec)
- Process Heat Standard via separation heat exchanger
- Sealed fuel cartridges from factory to repository
- Factory certifiable (as for aviation turbojet engines)
- 97% capacity factor

3 MWe ORC (Organic Rankine Cycle) 10 MWe Brayton Standard transport platforms 3-phase conditioned AC buses

Factory-certified Rapidly Deployable Configurations

Single ISO container

Clusterable ISO containers

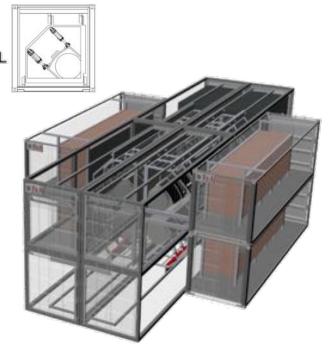
Electric Island Immediately Operational Min 3 MWe – 13 MWe Max

3-phase AC

Power Bus

Organic Rankine Cycle (ORC) **Heat Exchangers Cooling**

3MWe - 13MWe


Generator

61 MWe SCALED UP FOUR SUBCRITICAL TITAN POWER MODULES **INSIDE 4 ISO CONTAINERS**

> AUXILIARY POWER COMPONENTS INSIDE 4 ISO CONTAINERS

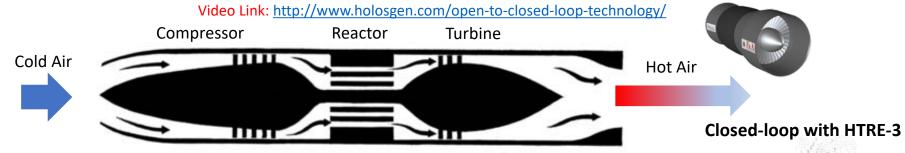
ORC MODULES **INSIDE 4 ISO CONTAINERS** 20 MWe ADDITIONAL POWER

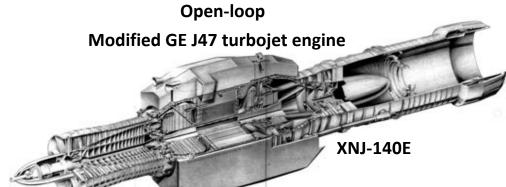
> 81 MWe TOTAL POWER GENERATION

http://www.holosgen.com/holos-quad/

Video Links

http://www.holosgen.com/holos-titan-generator/

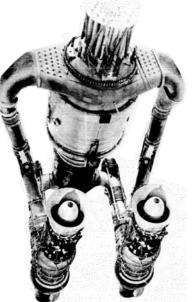



Subcritical Power Modules

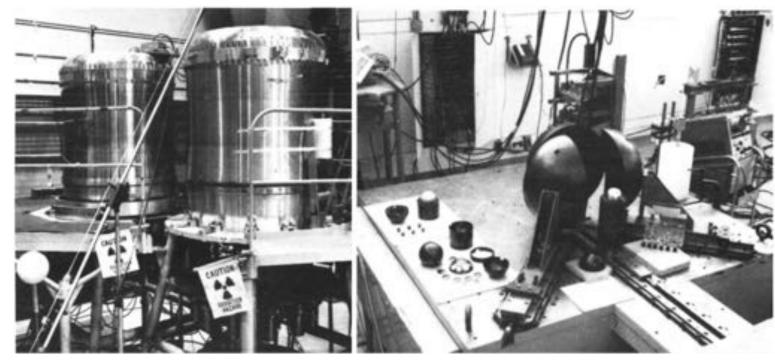
Process Heat Hydraulic Ports

Holos Thermal-hydraulic Feasibility

OPEN TO CLOSED LOOP
URBOJET TECHNOLOGY



The 1st aircraft engine based on nuclear energy operated January 31, 1956

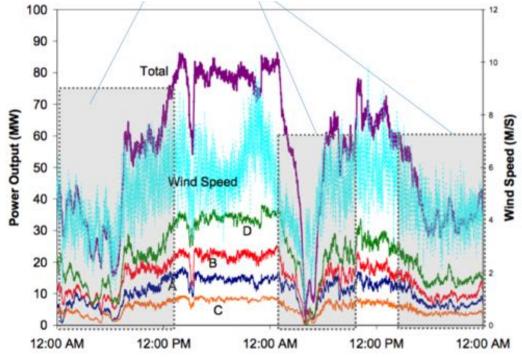


Holos Neutronic Feasibility

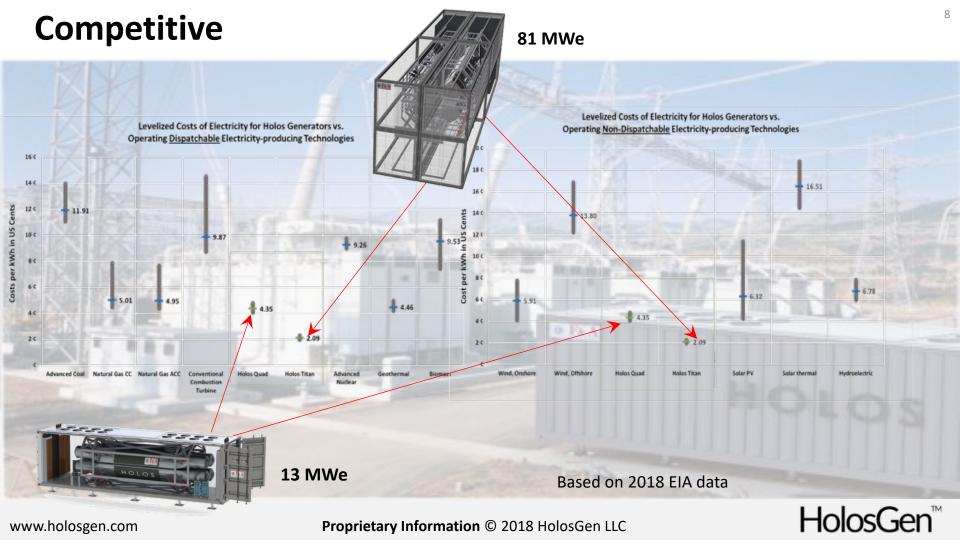
KIWI-TNT & Parka reactors

Flattop mobile reflectors

16 Rover "flyable" reactors were proof tested by LANL



Applications: pen-Dispatchable Renewables



Holos high-fidelity load following supports contingency power at the request of power grid operators

EV Charging Stations at non-electrified locations

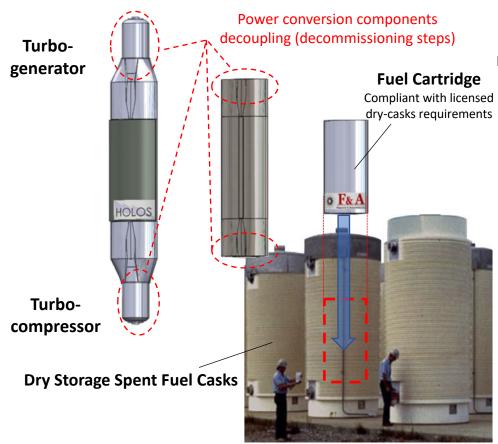
03-01-18, 15% of power customers still in the dark

Fukushima Daiichi Station

Preventing severe accidents induced by prolonged Station Black Out

Mass Production allows for True Economies of Scale

FOAK = 135M NOAK = 65M



Holos Architecture Enables Substantial Design Simplifications and Cost Reductions

- Nuclear Island, Turbine Island, Condenser, BoP coupling multiple Reinforced Concrete Buildings → SSCs reduction
- Fully autonomous, no on-site operators, 4 FTE off-site operators supporting simultaneous monitoring of multiple units
- Each unit is formed by multiple mass-produced components (e.g., turbo-generators, fuel cartridges) → reduced FOAK
- 1x Holos Generator Unit = 4x identical components → NOAK achieved with a few units

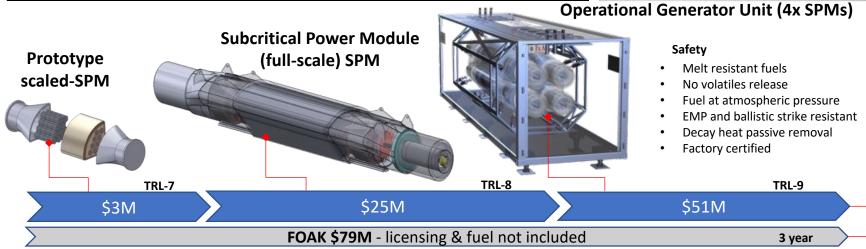
Simplified and expedited decommissioning

LWRs vs. Holos

Holos Systems, Structure and Components (SSCs) substantially reduced, inducing lower decommissioning costs

Decommissioning Sub-categories		Holos
Staffing	1	
LLW Burial	1	
Equipment Removal	1	✓
LLW Packaging & Shipping	1	
Decontamination Activities	1	1
Decommissioning Planning Activities	1	
Other Costs	1	1
Spent Fuel Management	1	1
Planning & Preparation	1	1
Dormancy w/Wet Fuel Storage	1	
Dormancy w/Dry Fuel Storage	1	✓
Dormancy w/No Fuel Storage	1	
Site Reactivation	1	
Decommissioning Preparation	1	
Large Component Removal	1	1
Plant Systems Removal & Building Remediation	1	
License Termination	1	1
Site Restoration	/	

LWRs: Light Water Reactors


Research, Development, and Deployment

R&D and **Deployment Schedule**

- \$3M scaled prototype: Feasibility and Fuel Cartridge Ballistic Testing
- \$79M full-scale deployable system via execution of 5 Main tasks over 3 years

Task	Description	T+1y		T+2y		T+3y		
1	Holos Core and Reactivity Control Optimization							
2	Thermal-hydraulic & Neutronic Models Verification							
3	Design and Manufacturing of Operational s-SPM and Test-rig							
4	Active Magnetic Bearings (AMB) Design & Manufacturing							
5	Worst-case Scenario Simulation & Testing							

Leveraging Operational Waste Heat Recovery Test-rig

Multi Mega-Watt thermal source enables SPM full-scale testing

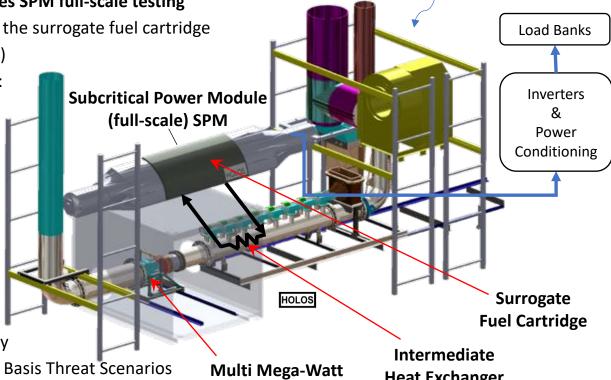
Intermediate HEX thermally coupling the surrogate fuel cartridge

Surrogate fuel cartridge (non-nuclear)

Full-scale SPM system fully equipped:

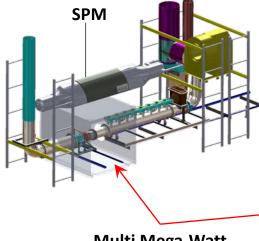
- ✓ Integral turbo-machinery
- ✓ Inverters & load banks
- ✓ Dynamic load simulator

Accelerated R&D and Deployment

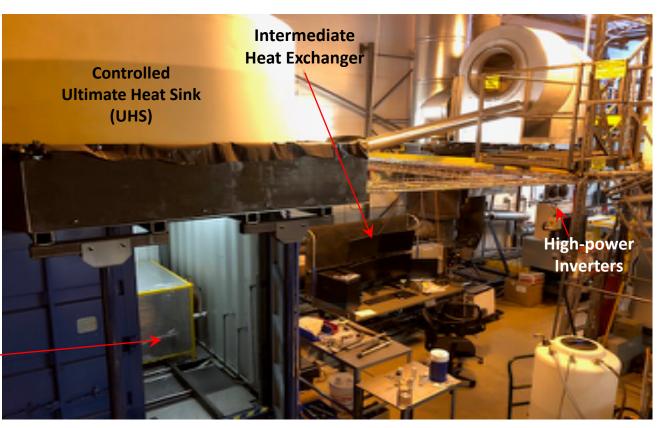

Full-scale testing accelerates:

- Safety performance validation
- Licensing processes
- Supports factory-certification pathway
- Performance validation under Design Basis Threat Scenarios

Thermal Source

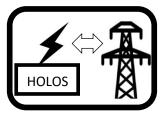

Heat Exchanger

Waste Heat Recovery Test-Rig

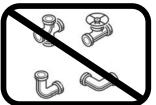


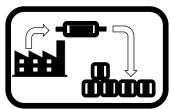
Low-cost Operational Waste Heat Recovery Test-rig

- Testing at full-scale conditions
- Low-cost safety and technical performance validation
- Accelerated development

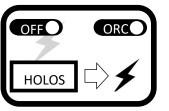


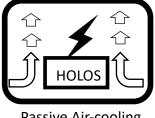
Multi Mega-Watt
Thermal Source

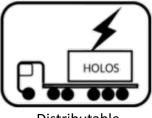


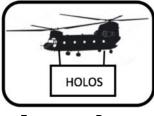

Summary

Power-demand Matching (load-following)


BoP Elimination Integral Power Conversion


Sealed From Factory to Repository


Sabotage Coping Capability, inherent, passive and active


Electricity Production after Shutdown

Passive Air-cooling

Distributable

Emergency Power

Marine Propulsion

Mining Operations

Detailed Technical & Economic Information available at:

www.holosgen.com

Case Studies

Questions?

